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Abstract

The use of sponge regions, or sponge zones, which add the forcing term �r(q � qref) to the right-hand-side of the
governing equations in computational fluid mechanics as an ad hoc boundary treatment is widespread. They are used
to absorb and minimize reflections from computational boundaries and as forcing sponges to introduce prescribed dis-
turbances into a calculation. A less common usage is as a means of extending a calculation from a smaller domain into a
larger one, such as in computing the far-field sound generated in a localized region.

By analogy to the penalty method of finite elements, the method is placed on a solid foundation, complete with esti-
mates of convergence. The analysis generalizes the work of Israeli and Orszag [M. Israeli, S.A. Orszag, Approximation
of radiation boundary conditions, J. Comp. Phys. 41 (1981) 115–135] and confirms their findings when applied as a
special case to one-dimensional wave propagation in an absorbing sponge. It is found that the rate of convergence
of the actual solution to the target solution, with an appropriate norm, is inversely proportional to the sponge strength.
A detailed analysis for acoustic wave propagation in one-dimension verifies the convergence rate given by the general
theory. The exponential point-wise convergence derived by Israeli and Orszag in the high-frequency limit is recovered
and found to hold over all frequencies. A weakly nonlinear analysis of the method when applied to Burgers� equation
shows similar convergence properties. Three numerical examples are given to confirm the analysis: the acoustic exten-
sion of a two-dimensional time-harmonic point source, the acoustic extension of a three-dimensional initial-value prob-
lem of a sound pulse, and the introduction of unstable eigenmodes from linear stability theory into a two-dimensional
shear layer.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, there has been an increasing interest in developing predictive methods for aeroacoustic
applications. In a purely numerical prediction, the most fundamental way to determine the flow noise of a
given configuration is to solve the compressible Navier–Stokes equations in a large computational domain
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with sufficient resolution to capture the temporal and spatial scales of the noise sources and the radiated
sound field. In free shear flows, where the sound is generated by turbulence, one must often provide inflow
disturbances at the inlet plane to seed instabilities that promote natural transition to turbulence [1–4]. This
must be done quietly in the sense that the inflow conditions not generate spurious noise that may over-
whelm the physical sound. A particularly efficient technique of inflow seeding uses forcing sponges where,
in a small region of the flow, an additional term �r(x)(q � qref), is added to the governing equations to
�force� the computed solution to q match the precomputed, unsteady reference solution qref. Generally
the parameter r, called the sponge strength, is a function only of space and qref a function of space and
time. At outflow and lateral boundaries, one may take qref to be the steady laminar or RANS (Reynolds
averaged Navier–Stokes) solution of a corresponding problem or specified by empirical data to, again,
drive the near-boundary field to a known solution, making boundary conditions easier to implement
and the calculation less sensitive to the boundary conditions [5].

These uses of sponge regions have in common the addition of the term
�rðxÞðq� qrefÞ

to the governing equations. The specification of the reference solution and the manner in which the term is
implemented – as either inflow forcing or outflow absorbing layers – differentiates the cases. It is the prop-
erties of such a term, namely the dependence of the rate of convergence of q to qref on r, that are the focus
of the remainder of this paper.

Israeli and Orszag [6] analyzed the use of sponge regions, which they called �Newton cooling,� in the spe-
cific case of one-dimensional acoustic wave propagation using WKB (Wentzel–Kramers–Brillouin) theory.
They found exponential point-wise convergence between the target and actual solutions for acoustic wave
propagation in one dimension. Also using WKB they found the reflection coefficient to be a non-monotonic
function of the sponge strength. This report confirms and generalizes their analysis to the case of arbitrary
frequency and to problems in more than one-dimension. In the case of periodic domains with fringe
regions, Nordström et al. [7] also found exponential point-wise convergence. Freund [8] analyzed this tech-
nique for the one-dimensional wave equation, where r was taken to be a constant in space. Using Fourier
transforms, he found that q ! qref as r

�1. This paper extends these results to multi-dimensional problems
with spatially varying r.

The use of absorbing layers (perfectly matched layers, PMLs) to minimize reflections in wave propaga-
tion problems was further developed by Berenger [9] in electromagnetics and extended to fluid mechanics
by Hu [10,11] and Hesthaven [12]. Colonius and Ran [13] proposed a super-grid-scale boundary condition
based on windowing the governing equations in physical space. Using an approximate form of their model
they find superior results compared to PML in an acoustic reflection problem and roughly equivalent per-
formance to the present method in a convecting nonlinear vortex problem. The sponge layer discussed in
the present context differs from the PML and super-grid-scale models in two aspects: (i) it is not formulated
to ensure perfect transmission with no reflection (in the case of PML) nor requires modeled dynamics (for
the super-grid-scale model) and (ii) it does not involve variable/eigenvalue splitting or require extra spatial
derivatives be taken. Because of (ii) sponge regions are particularly appealing. A recent, and excellent,
review of absorbing layers, sponge regions, and their variants, was given by Colonius [14].
2. Analysis of the sponge regions

If the sponge region problem is slightly restated, similarities are apparent between it and that of the solu-
tion of incompressible fluids by mixed or finite elements using penalty methods (see [15,16] and references
therein). The mathematical foundation of finite element methods can then be used to determine the prop-
erties of the method and, most importantly, the rate of convergence estimate.
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We begin by stating the original problem of finding the field u produced by a source distribution.
Although the present context deals with fluid mechanics, there is no limitation in applying what follows
to other physical problems. Moreover, the identification of the field with a particular set of physical vari-
ables, such as the primitive variables (density, pressure and velocity), the conservative variables (mass den-
sity, momentum density and energy density), etc., is not necessary as one may be readily transformed into
any other. So let X � Rn be a bounded open set with boundary oX. Then for some finite T > 0 consider the
problem for m variables u = [u1, . . . ,um]

T,
ou
ot þ

Pn
i¼1

Ai ou
oxi

¼ f in X� ð0; T �;

uðx; 0Þ ¼ g1ðxÞ on X� ft ¼ 0g;
Buðx; tÞ ¼ h1ðx; tÞ on oX� ð0; T �;

8>>><
>>>:

ð1Þ
where u 2 V for some Hilbert space V, f,g1 2 L2(X) and h1 2 L2(oX). The source term f is presumed to be
independent of u and have compact support in X. The matrices Ai 2 Mm�m; i ¼ 1; . . . ; n, may be functions
of x 2 X and t 2 [0,T]. The precise choice of V is not important for what follows but only the fact that V has
an inner product and norm satisfying the respective axioms. Generally, V will be a Sobolev space (see [17,
Chapter 5]). The operator B relates the subset of variables, or their derivatives, that may be specified on the
boundary with the imposed condition h1(x, t).

Now consider the extension problem, where in a spatial region C � Rn with X � C (see Fig. 1) we wish to
find the field v subject to the following: (i) in X, the field v faithfully represents u and (ii) in CnX, v is de-
scribed by the appropriate hyperbolic system. If it were possible, the �preferred� problem would be stated,
with v 2 V, g2 2 L2(C), h2 2 L2(oC), as
ov
ot þ

Pn
i¼1

Ai ov
oxi

¼ 0 in C� ð0; T �;

vðx; 0Þ ¼ g2ðxÞ on C� ft ¼ 0g;
Bvðx; tÞ ¼ h2ðx; tÞ on oC� ½0; T �;
subject to v � u in X� ½0; T �.

8>>>>><
>>>>>:

ð2Þ
The total specification of v in the region X is not valid and an alternative condition in X must be imposed.
If, instead of requiring strict equality between v and u in X, we want to minimize ||v � u||V, where ||Æ||V is a
norm on elements in the space V, then we are led to the problem analogous to penalty methods [15], which
may be written
ov
ot þ

Pn
i¼1

Ai ov
oxi

¼ �rðv� uÞ in C� ð0; T �;

vðx; 0Þ ¼ g2ðxÞ on C� ft ¼ 0g;
Bvðx; tÞ ¼ h2ðx; tÞ on oC� ½0; T �;

8>>><
>>>:

ð3Þ
Γ, v

Ω,u

Fig. 1. Schematic of the original domain X with field u and the extended domain C with field v.
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where now r 2 Mm�m is a diagonal matrix of strictly positive penalty parameters. The problem originally
posed by Freund [8] may be recast as a special case of (3). With the extension problem posed, it is desired
to find how the difference ||v � u||V depends on r. We assume that r ” 0 outside of X.

Determining the convergence properties of v to u as a function of r is straightforward if the weak, or
variational, form of (3) is considered. Let w 2 V be any suitably smooth test function. Multiply (3) by w
and integrate over C. Do similarly for the original system (1) and subtract (1) from (3). With u known
in principle in C (so that the integrals are defined) and having the same boundary conditions on oC as v,
we find that
1 By
be piec
[15], so
ððv� uÞt;wÞV þ
Xn
i¼1

Aiðv� uÞxi ;w
 !

V

þ ðrðv� uÞ;wÞV þ hf ;wi � hg2 � g1;wi ¼ 0; ð4Þ
where (Æ , Æ)V is an inner product on V, ÆÆ , Ææ denotes the volume integral over C and ð�Þxi � oð�Þ=oxi. The
second inner product on the left-hand side of (4) may be written as a bilinear form
aðv� u;wÞ ¼
Xn
i¼1

Aiðv� uÞxi ;w
 !

V

and similarly for the third term on the left-hand side,
bðv� u;wÞ ¼ ðrðv� uÞ;wÞV .

The last task is to find a suitable estimate of (4) that demonstrates the convergence properties.

We proceed by re-writing (4) as
bðv� u;wÞ ¼ �ððv� uÞt;wÞV � aðv� u;wÞ � hf ;wi þ hg2 � g1;wi. ð5Þ

Using estimate (1.27) in Chapter II of Brezzi and Fortin [18], we find that
krkMm�mkv� ukV 6 sup
w2V

�ððv� uÞt;wÞV � aðv� u;wÞ
kwkV

� hf ;wi � hg2 � g1;wi
kwkV

� �
ð6Þ
or, on using the triangle inequality,
krkMm�mkv� ukV 6 sup
w2V

ððv� uÞt;wÞV
kwkV

þ kak � kv� ukV þ kf kL2ðCÞ þ kg2 � g1kL2ðCÞ. ð7Þ
If we assume that the matrices Ai 2 C2ðC� ½0; T �;Mm�mÞ; i ¼ 1; . . . ; n (cf. [17]), for C2 being the space of
twice continuously differential functions, then ||a|| is finite and continuous with respect to the elements of
the Ai.

The estimate of ((v � u)t,w)V needs to be considered in two cases that depend on the initial data, i.e., on
specification of g2. For the first case, consider a g2 that is not equal to u(x, 0) = g1 so that the initial field of v
is not representative of u. Then, for u suitably smooth and ||r|| suitably large, the spatial derivatives of v � u

will be negligible relative to the right-hand side of the first equation in (3).1 The reduced equation,
ðv� uÞt ¼ �rðv� uÞ ð8Þ

has solutions that decay exponentially with time scale T, say. So, for 0 < t < T, the time derivative of
v � u scales like ||r|| and dominates the remaining terms in estimate (7). For t > T, the right-hand side
�r(v � u) no longer dominates in (3) so that the bilinear form a(v � u,w) and inner product (r(v � u),w)V
considering the weak forms of (1) and (3), we do not require u and v to everywhere continuously differentiable. Instead they may
ewise continuous and almost everywhere differentiable. In practice, both u and v will be at least C1 due to the action of viscosity
that the estimate of ||a(v � u,w)||� ||r(v � u)|| makes sense.
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are important. Then ((v � u)t,w)V can no longer scale with ||r|| so that the estimate of ((v � u)t,w)V is
M||v � u||V for some constant M.

In the second case for estimating ((v � u)t,w)V, the argument of the preceding paragraph shows imme-
diately that if g2 = u(x, 0), then
sup
w2V

ððv� uÞt;wÞV
kwkV

6 Mkv� ukV . ð9Þ
Combining estimate (9) with (7) leads then to the convergence properties of the proposed method; namely,
that
kv� ukV 6

kf kL2ðCÞ þ kg2 � g1kL2ðCÞ
krkMm�m � kak �M

; ð10Þ
where it is understood that the estimate is valid for times t > T when the initial conditions on v do not
match u at t = 0. The most important result of (10) is that ||v � u||V ! 0 like krk�1

Mm�m .
In the analysis just presented, we have assumed that both fields are governed by identical linear hyper-

bolic equations; some additional elaboration is needed on this point. In practice, the dynamics of the ori-
ginal problem may be nonlinear, as would be the case where u would be determined using the compressible
Navier–Stokes equations. This naturally leads to the question of the validity of expressing the original
problem as (1). For many problems of interest, the sponge region located near the boundary oX is generally
�far�, in terms of wavelengths, from the region of nonlinearity. If we take X to be �far enough� away from the
nonlinear processes then the nonlinear equations may be sufficiently well approximated by a linearized set
of equations, such as the linearized Euler equations, in which case (1) is justified. A weakly nonlinear anal-
ysis is presented in Section 3.3 using Burgers� equation.

In those cases where a forcing sponge is being used, such as near the inflow boundary of a turbulent jet,
the evolution of the disturbances is approximately linear so long as the disturbance amplitude remains suit-
ably small. Then for the cases of Reynolds numbers of interest, viscous effects are small and the main role of
the mean field on which the disturbances are superposed is to convect the disturbances into the domain and
to provide a source of energy for the disturbance growth. In this case, writing the problem as (1) is justified.
The forcing problem is discussed in more detail in Section 4.3.
3. Detailed solutions in one-dimension

To gain further insight into the rather general analysis presented in Section 2, consider the case of the
linear Euler equations in one-dimension. In a medium with pressure p0, density q0 and speed of sound
c0 the perturbation density q, the perturbation velocity u and the entropy fluctuation s satisfy the system
of equations
oq
ot

þ ou
ox

¼ �r1ðq� qrefÞ;

ou
ot

þ op
ox

¼ �r2ðu� urefÞ;

os
ot

¼ �r5ðs� srefÞ.

ð11Þ
Here the density is normalized by q0, the velocity by c0, and the pressure by q0c
2
0. The entropy fluctuations

are written as s = (s* � s�)/cv, where s* is the dimensional entropy, s� is a reference entropy state and cv is
the coefficient of specific heat taken at constant volume. The pressure fluctuations p are related to q and s

via the linearized equation of state
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p ¼ qþ c�1s; ð12Þ

with c being the ratio of specific heats. Our aim is to determine the functional dependence of {q,u, s} on the
{ri} and the reference states.

For the linear system (11), where the base medium properties and the sponge strengths are independent
of time the time-Fourier transform may be used. With the definition of
f̂ ðx;xÞ ¼
Z
R

f ðt; xÞe�ixt dt ð13Þ
we have, from (11), fq̂; û; ŝg as
ixq̂þ dû
dx

¼ �r1ðq̂� q̂refÞ;

ixûþ dp̂
dx

¼ �r2ðû� ûrefÞ;

ixŝ ¼ �r5ðŝ� ŝrefÞ.

ð14Þ
Immediately the entropy fluctuations are seen to be one-way coupled to the density and velocity fluctua-
tions so that one may write the result
ŝ ¼ r5

r5 þ ix
ŝref ð15Þ
independent of q̂ and û.
On using the equation of state (12) and (15), the density and velocity Fourier coefficients satisfy the pair

of equations
ðixþ r1Þq̂þ dû
dx

¼ r1q̂ref ;

ðixþ r2Þûþ
dq̂
dx

¼ r2ûref �
1

c
d

dx
r5

r5 þ ix
ŝref

� �
.

ð16Þ
Eq. (16) may be written as the matrix form of
Bq̂þ A
dq̂
dx

¼ S ð17Þ
with the operators
B ¼
ixþ r1 0

0 ixþ r2

� �
; A ¼

0 1

1 0

� �
; S ¼

r1q̂ref

r2ûref � 1
c

d
dx

r5
r5þix ŝref
� �" #

. ð18Þ
The general solution to (17) on the open domain x 2 [x0,+1) is given by [19] as
q̂ðxÞ ¼ Uðx� x0Þnþ UðxÞ
Z x

x0

U�1ðyÞSðyÞ dy; ð19Þ
where q̂ðx0Þ ¼ n is the boundary condition at x0. The fundamental matrix U(x) is the solution to the matrix
equation
dU
dx

¼ �A�1BU; Uðx0Þ ¼ I ð20Þ
with I being the identity matrix. Based on Section 2, we expect that the general behavior of q̂ in the sponge
region is roughly independent of the details of the problem. Thus we here to consider the simple case of
ri ” constant for i = 1,2 and 5, which is equivalent to considering only the problem in the sponge region.
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One can, for the case of a discontinuous (at x = xd, say) matrix sponge strength r = diag(r1,r2,r5), formu-
late the two-zone problem in x < xd and x > xd with jump conditions at xd. In this case, the analysis to fol-
low is appropriate for the solution in x < xd. Similar comments apply to the case of smooth r. For spatially
varying r, see the analysis of 3.2.

3.1. Solutions with constant sponge strength

For constant matrices A and B from (17), the fundamental solution U is given by the matrix exponential
U ¼ e�A�1Bx ¼
coshðzxÞ a

z sinhðzxÞ
b
z sinhðzxÞ coshðzxÞ

� �
; ð21Þ
where
a ¼ �ðixþ r2Þ; b ¼ �ðixþ r1Þ and z2 ¼ ab. ð22Þ

For the square root implied by z2 = ab, the principle branch is suitable. Carrying out the matrix multipli-
cation and taking n = 0, i.e., only the forced problem, we have
q̂ðxÞ ¼
Z x

x0

s1ðyÞ cosh½zðx� yÞ� þ a
z s2ðyÞ sinh½zðx� yÞ�

b
z s1ðyÞ sinh½zðx� yÞ� þ s2ðyÞ cosh½zðx� yÞ�

� �
dy; ð23Þ
where S = [s1 s2]
T has been used. An interesting feature of (23) is that the hyperbolic sines and cosines imply

that the solution may have exponentially growing behavior, in contrast to the algebraic result of Section 2,
unless cancellations occur.

The reference solutions q̂ref and ûref are presumed to be solutions of the homogeneous form of (14) (i.e.,
with r ” 0) in which case for ûref one may write
ûref ¼
1

ix
� dq̂ref

dx
� 1

c
dŝref
dx

� �
. ð24Þ
Whether the reference solution is steady (i.e., absorbing) or unsteady (forcing) depends on the value of x:
qref is steady for x = 0 and unsteady otherwise. The two cases will be treated separately.

3.1.1. Case 1: Forcing qref with x 6¼ 0

When the reference solution is unsteady corresponds, generally, to the case when one is interested in
driving, or forcing, a particular solution. A typical example is the forcing of unsteadiness in a turbulent flow
[4]. For an unsteady forcing, we consider the case when ŝref � 0, which corresponds to forcing with an
acoustic reference solution. No unsteady, non-isentropic solutions to the homogeneous form of (14) exist
that satisfy ixŝref ¼ 0 so that the density and velocity Fourier coefficients satisfy the simple relationship
ûref ¼ � 1

ix
dq̂ref

dx
; ð25Þ
which follows directly from (14). Thus we may write
s2ðyÞ ¼ G
ds1ðyÞ
dy

with G ¼ � 1

ix
r2

r1

. ð26Þ
On substituting (26) into (23) and integrating by parts, we get
q̂ðxÞ ¼
Z x

x0

1þ Gz2

b

� �
s1ðyÞ cosh½zðx� yÞ�

z
a þ Gz
	 


s1ðyÞ sinh½zðx� yÞ�

2
4

3
5dy þ Gz

b sinh½zðx� yÞ�s1ðyÞ
Gs1ðyÞ cosh½zðx� yÞ�

� �x
x0

. ð27Þ



688 D.J. Bodony / Journal of Computational Physics 212 (2006) 681–702
By a translation of x, we can take x0 = 0 for simplicity.
In choosing the form of the reference solution, and hence that of s1(y), we are free to use a Fourier

expansion in x for q̂ref . Thus, for an acoustic reference solution we have
q̂refðxÞ ¼ ~qref e
�ikx; ð28Þ
where x2 = k2 is the acoustic dispersion relation. (Recall the speed of sound has been normalized to unity.)
The Fourier amplitude ~qref is constant. To force acoustic waves into the domain, we take k > 0 for x > 0.
Substituting (28) into (27) and carrying out the integration results in the final solution of q̂ðxÞ of
q̂ðxÞ ¼ A sinhðzxÞ þ B coshðzxÞ þ Ce�ikx; ð29Þ
where
A ¼
a1b

a2b
�1

� �
; B ¼

�a2
�a1

� �
and C ¼

a2
a1

� �
ð30Þ
and
a1 ¼
r2
1 þ ixðr1 þ r2Þ

r1r2 þ ixðr1 þ r2Þ
; a2 ¼

r2
2 þ ixðr1 þ r2Þ

r1r2 þ ixðr1 þ r2Þ
and b ¼ ixþ r2

ixþ r1

� �1=2

. ð31Þ
The forced solution q̂ is seen to be the summation of two parts: (i) an exponentially growing/decaying
7portion and (ii) an oscillatory portion. The success of a sponge treatment in forcing a particular reference
solution is dependent on the proper selection of the sponge strengths r1 and r2. Only in those cases where
A = �B, so that the exponentially growing terms of sinh(zx) and cosh(zx) cancel, will the application be
stable. Thus it is required that
a1b ¼ a2; ð32Þ
whose only solution for r1, r2 > 0 is r1 = r2. Here, it is seen that only permissible choice is for equal sponge
strengths, a result that was implicit in [8]. With r1 = r2 := r the constant vectors A, B and C take the simple
form of
A;B;C ¼
1

1

� �
for r1 ¼ r2. ð33Þ
As a function of x > x0, then we find that point-wise the reference solution q̂ref and the forced (or desired)
solution q̂ differ according to
q̂� q̂ref ¼ �2e�zx; ð34Þ
which decays exponentially with increasing x. In the more general discussion of Section 2, the convergence
was based on the norm || Æ || which, for the present case, may be taken as (for a sponge region of length L)
kq̂� q̂refk ¼
Z x0þL

x0

kq̂� q̂refk dx � r�1 ð35Þ
in agreement with the analysis of Section 2.

3.1.2. Case 2: Absorbing q̂ref with x = 0

In this situation, we are interested in deriving a given solution q̂ towards a steady solution q̂ref . The most
common usage applies to absorbing boundary treatments [14] that attempt to reduce fluctuation levels of
disturbances approaching a computational boundary. Such a boundary treatment has been used by many
researchers (see, e.g., [4]).
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For this case, we set q̂ref ¼ 0, although the more general reference solution of
ûref ¼ constant; q̂ref ¼ � 1

c
ŝref þ constant and ŝref ¼ f ðxÞ; ð36Þ
where f is an arbitrary function of x, satisfies the homogeneous form of (14). In contrast to the unsteady
case where we were interested in the particular solution of (17), it is now the initial value problem in x

of the homogeneous system
Bq̂þ A
dq̂
dx

¼ 0 ð37Þ
subject to q̂ðx0Þ ¼ n that is of interest. Again, a translation in x allows us to take x0 = 0 without loss of
generality. The solution of (37) was given in (19), which simplifies to
q̂ðxÞ ¼ UðxÞn ð38Þ

when q̂ref ¼ 0. With U given by (21) the solution is
q̂ðxÞ ¼
coshðzxÞn1 þ a

z sinhðzxÞn2
b
z sinhðzxÞn1 þ coshðzxÞn2

� �
; ð39Þ
where n1 ¼ q̂ð0Þ; n2 ¼ ûð0Þ are the components of n at x = 0.
Assuming q̂ and û are acoustic solutions that satisfy the homogeneous form of (14), (39) can be expanded

as (with ~u ¼ k=ðixÞ~q, q̂ðxÞ ¼ ~qe�ikx and ûðxÞ ¼ ~ue�ikx)
q̂ðxÞ ¼
coshðzxÞ � b sinhðzxÞ

�b�1 sinhðzxÞ þ coshðzxÞ

� �
~q. ð40Þ
To ensure a decaying solution one requires that r1 = r2, similar to the unsteady case. Point-wise q̂ approaches
q̂ref ¼ 0 exponentially fast with increasing x and the integral error for x > x0 is proportional to r�1.

3.2. Reflection at a sponge-treated boundary

From the specialized cases with constant sponge strength, it was found that having equal sponge
strengths was necessary for stable solutions. It is reasonable to suppose that such a conclusion also follows
for those situations with variable sponge strengths. (Although, in practice, the finite sponge zone size limits
the overall growth.) Thus we pose the following example that is typical of sponge treatment usage: consider
one-dimensional acoustic waves incident on a sponge region of finite length L with sponge strength r(x) (see
Fig. 2). We wish to examine the strength of the reflected wave q̂s due to an incident wave q̂i and extend the
result of Israeli and Orszag [6] to arbitrary frequency.

Because r varies with x we return to the original system (14). In the case of pure acoustic waves, we set
ŝ � 0 so that only the first two equations of (14), for q̂ and û, apply. Exploiting the linearity of (14), we may
express the problem in an incident wave/scattered wave form by setting
q̂ ¼ q̂i þ q̂s; ð41Þ

where q̂i is the incident, right-traveling acoustic wave and q̂s is the scattered, left-traveling acoustic wave.
Away from the sponge, where r = 0, q̂i and q̂s have simple forms. In the sponge region, we choose to damp
the perturbations so that q̂ref ¼ 0. Thus the governing equations for the scattered field are
ðixþ rÞq̂s þ
dûs
dx

¼ �rq̂i;

ðixþ rÞûs þ
dq̂s

dx
¼ �rûi.

ð42Þ



Fig. 2. One-dimensional acoustic waves impinging on a sponge zone.
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For an incident field of the form q̂i ¼ ~qie
�ikx, with k = x > 0, the boundary conditions are as follows. At

x = L, a solid wall is placed so that û ¼ 0. As x ! �1, we expect a left-traveling acoustic wave, of un-
known strength, to propagate: q̂s � eþikx with k > 0. Note that the factor (ix + r) in (42) can be written
as ixeq, where xeq = x � ir is an equivalent complex frequency. In the time-Fourier space, the damping
may be interpreted as a complex-valued frequency.

It is expedient, in terms of applying boundary conditions, to solve the problem in the form of a single
equation for the scattered velocity ûs. Taking the x-derivative of the first equation of (42) and using the
second equation of (42) yields the second-order equation
d2ûs
dx2

� 1

ixþ r
dr
dx

dûs
dx

� ðixþ rÞ2

c20
ûs ¼ � i

x
1þ r

ixþ r

� �
dr
dx

dûi
dx

� r2ûi :¼ ŝðxÞ. ð43Þ
The boundary conditions are
ûs ¼ �ûi at x ¼ L;

ûs � eþikx at x ! �1;
ð44Þ
with ûi ¼ ~uie�ikx.
Away from the sponge, where r = 0, the limiting form of (43),
d2ûs
dx2

þ x2ûs ¼ 0 ð45Þ
has e±ikx as solutions. Thus for x < 0 we expect ûs to be
ûs ¼ Ae�ikx þ Beikx; ð46Þ

where A and B are complex coefficients. For x P 0, the form of ûs depends on the specific sponge distribu-
tion chosen. A commonly used variation is
r ¼ gðx=LÞnHðxÞ ð47Þ

for non-negative integer n. H(x) is the Heaviside function defined as H(x) = 0 for x < 0 and H(x) = 1 for
x > 0. The sponge strength is controlled by the positive parameter g. With this form of r the general homo-
geneous solution of (43) is
ûsh ¼ Ae�ikx�HðxÞnn þ BeþikxþHðxÞnn ¼ Ay1ðxÞ þ By2ðxÞ; ð48Þ

where nn = gxn+1/[(n + 1)Ln]. The particular solution of (42) is given by [19]
ûsp ¼ �y1ðxÞ
Z x y2ðtÞŝðtÞ

W ðy1; y2Þ
dt þ y2ðxÞ

Z x y1ðtÞŝðtÞ
W ðy1; y2Þ

dt; ð49Þ
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with W ðy1; y2Þ ¼ y1y
0
2 � y2y

0
1 being the Wronskian and () 0 denoting differentiation with respect to x. The full

scattered solution is then the sum of the homogeneous and particular solutions:
ûs ¼ ûsh þ ûsp. ð50Þ
Application of boundary conditions (44) shows that A = 0 for a left traveling wave and B is chosen to sat-
isfy the zero-velocity condition ðûs ¼ �ûiÞ at x = L.

The property of the solution that is most of interest is the reflected wave, ûs, as g increases for fixed x < 0.
As a function of n we find that, using (48) and (49),
ûs �
g for n ¼ 0;

Lge�Lg=ðnþ1Þ for n ¼ 1; 2; . . . ;

�
ð51Þ
as g,L ! 1. When n = 0 and the sponge strength is discontinuous, the sponge length does not influence the
results to leading order and the reflected wave increases in amplitude with increase sponge strength g. Once,
however, the sponge strength is continuous (n P 1) the reflected wave has an exponentially decaying ampli-
tude as the sponge strength and the sponge length are increased. As the polynomial order n of the sponge
strength distribution function is increased, the reflected wave amplitude also increases, albeit slightly, for
fixed g. These scalings are verified in Fig. 3. Note that Fig. 3 reproduces Fig. 3 of Israeli and Orszag [6]
but is not restricted by the limits necessary for WKB validity.

3.3. Weakly nonlinear analysis of Burgers’ equation

Thus far the widely applicable linear analysis of Section 2 was verified in the linear problems described
above. While a similar theory applicable to nonlinear systems of equations is not available, experience sug-
gests that (nearly) equivalent convergence rates apply in nonlinear problems commonly found in fluid
mechanics. To verify this observation in the context of a weakly nonlinear analysis we appeal to the model
problem of inviscid Burgers� equation which is the appropriate limiting case in a few problems in aerody-
namics [20]. Thus consider Burgers� equation in Rn, for n = 1,2,3,
oq
ot

þ ½ðU þ qÞ � r�q� m
o
2q

oxk oxk
¼ �rðq� qrefÞ; ð52Þ
where U is a constant vector. The Cole–Hopf transformation [20] provides a means to determine analytical
solutions of (52), with r ” 0, when q = �2m$h and h satisfies the heat equation oth = m$2h. When r 6¼ 0 the
Cole–Hopf transformation does not apply. However, if we take m ” 0 then we may apply the method of
characteristics in solving (52).

Suppose that v is a solution to (52) with r ” 0 and represents the target solution. Then set q = v + �w with
0 < � � 1. Substituting, letting w = w0 + �w1 + � � �, and separating by polynomial powers of � we find that
�0 : otw0 þ ½ðU þ vÞ � r�w0 ¼ �ðrþrvÞw0; ð53Þ
�1 : otw1 þ ½ðU þ vÞ � r�w1 ¼ �ðrþrvÞw1 � ðw0 � rÞw0 ð54Þ
with similar equations for �p for integer p > 1. The equation for w0 may be solved by the method of char-
acteristics by defining s(t,x0) to be the scalar coordinate along the characteristic starting with s = 0 at
x = x0. Along the characteristic w0 satisfies
dw0

ds
þ ðrþrvÞw0 ¼ 0; ð55Þ

dx
ds

¼ U þ v; ð56Þ
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Fig. 3. Reflected wave amplitude (solid) and its asymptotic form (dashed) as a function of sponge strength. The amplitude is measured
at x = �k, where k = 2p/x is the acoustic wavelength, for an incident wave of strength kûik ¼ 1. The sponge length is taken as L = k.
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where d/ds is the derivative along the characteristic. We may formally solve the second of these equations
as
xðx0; sÞ ¼
Z s

0

ðU þ vÞðs0Þ ds0 þ x0 ð57Þ
and the first as
w0ðx0; sÞ ¼ UðsÞn; ð58Þ
where U satisfies the matrix equation
dU
ds

¼ �ðrþrvÞU subject to Uð0Þ ¼ I ð59Þ
and n is the value of w0 at s = 0.
In the limiting case where ||r||	 ||$v|| we have, because r is diagonal, the result that UðsÞ 


exp½�
R s
0 rðs0Þds0� so that w0 decays exponentially along the characteristic. A similar conclusion holds when,

as s ! 1, r approaches a constant (non-zero) matrix and $v ! 0 [19]. When the analysis is carried out to
order �1 one finds that ||w0|| 	 ||w1|| as s! 1 under these conditions.

From this we conclude that for the irrotational, convective flow modeled by Burgers� equation the
weakly nonlinear analysis shows an approximately exponential point-wise convergence of q to qref along

the characteristic for those cases where the asymptotic solutions of (59) may be found. It is here emphasized,
however, that one should be cautious in extrapolating these results to more general nonlinear systems, espe-
cially to those where coupling is important.
4. Numerical examples in two and three dimensions

Although the analysis of Section 3 was carried out in one-dimension, the overall convergence estimate in
(10) is valid in more general spaces. To illustrate this additional numerical examples are presented for two-
and three-dimensional problems.

4.1. Two-dimensional harmonic acoustic problem

Consider a two-dimensional space with uniform properties q0 and c0. For the problem of linear acoustic
propagation in an inviscid medium, the operators Ai of (1) take the particularly simple form of the constant
matrices
A1 ¼

0 q0 0 0

0 0 0 q�1
0

0 0 0 0

0 cp0 0 0

2
6664

3
7775; A2 ¼

0 0 q0 0

0 0 0 0

0 0 0 q�1
0

0 0 cp0 0

2
6664

3
7775;
when using primitive variables u = [q ux uy p]T. The problem was first solved using the time-dependent
Euler equations linearized about a quiescent medium with the source present. The variables are
non-dimensionalized by the ambient density q0, the ambient speed of sound c0, and the length ‘. The
prescribed source distribution is that of a time-harmonic source located in the pressure and density equa-
tions of the form
f ¼ ½1 0 0 1�T expð�4r2ÞðsinðptÞ þ 8 sinð2ptÞÞ; r2 ¼ x2 þ y2.
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The computation domain is a square with sides of length 20‘ with 201 · 201 points uniformly spaced in the
x- and y-directions. Poinsot and Lele [21] non-reflecting boundary conditions were implemented on all four
sides. Along each edge, with normal coordinate f, an absorbing sponge with strength
ra ¼
kfk=‘� 8

10� 8

� �3

ð60Þ
for |f|/‘ P 8 is placed. The width of sponge region is equal to the longest acoustic wavelength k = 2‘, cor-
responding to 20 points. Time integration used the fourth-order Runge–Kutta (RK4) algorithm with a time
step of Dt = 0.01‘/c0 corresponding to a CFL of approximately 0.5.

Using the present method of (3), the problem was �re-solved� in the same domain with the same boundary
conditions but with the knowledge of the original field u limited to circle centered at the origin and of radius
slightly greater than two. The form of rf chosen was
rf ¼
rmax expð�4ðr � 1Þ2Þ for r > 1;

rmax for r 6 1;

(
ð61Þ
where rmax is a parameter. See the sketch in Fig. 4.
Fig. 5 shows the pressure field at a time approximately six periods, based on the lowest frequency, after

the simulation was started, along a line running through the origin with rmax = 100. Only part of the total
domain is shown. In this case, the initial conditions were v = 0 so that there was a significant difference in
v � u at the start. By the time shown, the initial condition discrepancy does not appear and there is agree-
ment between the two fields. Over three orders of magnitude of ||r|| (see Fig. 6), the convergence follows the
||r||�1 rate.
x

y

Absorbing sponge, σa

Forcing sponge, σ f

Source

Thompson non-reecting boundary conditions (all sides)

Fig. 4. Schematic of two-dimensional acoustic wave propagation produced by a time-harmonic source.



Fig. 5. Pressure field of two, two-dimensional monopoles computed using solution extension method of problem (3). Solid line ——,
exact solution; dotted line – – –, numerical solution; dash-dot line –Æ–, penalty parameter r(x)/rmax.
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The two-dimensional time harmonic problem does not provide evidence that the proposed penaltymethod
is useful for transient events. Thus a three-dimensional transient problem, that of a Gaussian acoustic pulse
centered at the origin, is presented next.

4.2. Three-dimensional transient acoustic problem

For the three-dimensional wave equation in free space, the field u is given by
o2u
ot2 � Du ¼ 0;

uðx; 0Þ ¼ gðxÞ;
ou
ot ðx; 0Þ ¼ hðxÞ.

8><
>: ð62Þ
The initial data of the pulse is
gðxÞ ¼ exp �r2
	 


; r2 ¼ x2 þ y2 þ z2;

hðxÞ ¼ 0.
The three-dimensional problem is solved in the same manner as the two-dimensional problem: the domain
consists of a cube with sides of length 20‘ on a grid of 101 · 101 · 101. The six faces of the cube use the same
non-reflecting boundary conditions described previously. rmax was taken to be 100 with spatial distribution
rf = rmaxexp(�4r2). The pressure field of part of the domain along a line parallel to the x-axis and running
through the origin is shown in Fig. 7 for three instances of time: t = 1, 2 and 3. Agreement between the two
fields for all three times is clear and the penalty method is seen to work well for transient problems.
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Fig. 6. Convergence of extended problem to original problem for various strengths of the penalty parameter r. Dashed line ——, r�1
max;

open circles s, numerical results.
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4.3. Forcing instability waves into a two-dimensional shear layer

In the calculations of Freund [1], Zhao et al. [2] and Bodony and Lele [4], for example, a forcing sponge
was used to introduce unsteady disturbances into a free shear flow in a controlled manner. In the latter two
studies, homogeneous solutions of an appropriate linearized Euler system (to be described below) were used
to introduce the disturbances without generating sound at the computational boundary (cf. [22]). While we
do not have an analysis appropriate to nonlinear systems of equations analogous to that described in Sec-
tion 2, we do expect the general conclusions to hold approximately based on the weakly nonlinear analysis
Burgers� equation in Section 3.3. This hypothesis is tested on the introduction of instability waves into a
two-dimensional shear layer.

The two-dimensional shear layer is shown in Fig. 8. The upper stream is quiescent while the lower stream
has a Mach number of 1.2. The static pressure p1 is constant across the layer while both streams have the
same temperature T1 as |y| ! 1. When non-dimensionalized with respect to the ambient fluid with density
q1, speed of sound c1, pressure q1c

2
1, temperature (c � 1)T1 and the initial vorticity thickness dx,0, the

equation of state is written p = [(c � 1)/c]qT. The Reynolds number Re = (q1DUdx,0/l1) is 500, with DU
the velocity difference across the shear layer, and the Prandtl number is 0.71.

The calculation is carried out on a 704 · 352 grid on a domain of size 130dx,0 · 65dx,0. The inflow forc-
ing sponge region is noted in Fig. 8 and extends from the upstream computational boundary to one insta-
bility wavelength downstream. Additional details of the calculation, including the determination of the
instability wave, are given in the appendix.

Denoting the instability wave solution as q 0 and the time-averaged mean flow as qin, the forcing sponge
solution is chosen to be qref = qin + �q 0, with 0 < �� 1, to introduce the instability waves into the shear
layer. The inflow sponge region is taken to be one instability-wavelength long (see Fig. 8) and of the form
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Fig. 8. Two-dimensional shear layer with vorticity contours.
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Fig. 7. Pressure field of the transient problem of a Gaussian sound pulse, centered at the origin, as initial data at t = 0 using the
method of problem (3). Times t = 1, t = 2 and t = 3 are shown. Solid line ——, exact solution; dotted line – – –, numerical solution;
dash-dot line –Æ–, penalty parameter r(x)/(10rmax).
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r ¼ A ki�x
ki

� �3
for x < ki;

0 otherwise;

8<
: ð63Þ
where A is an adjustable parameter. Three values of A were chosen: 0.1, 1.0 and 10.0.
For each value of A, the shear layer was forced and time-history data was collected along the shear layer

centerline at (x,y) = (ki,0)dx,0, i.e., at the end of the sponge region. The pressure time traces at this location
are shown in Fig. 9 along with the target instability-wave pressure. After an initial transient of t = 20dx,0/c1
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the forced shear layer follows the general form of the desired wave form but with differences in the phase and
amplitude depending onA. The weakest sponge with A = 0.1 differs the most from the target state; the stron-
gest sponge differs the least. By t = 80dx,0/c1, the shear layer solution fairly well matches the target state. If
one computes the difference between the computed and target state at t = 100dx,0/c1 as a function of A (see
Fig. 10) one finds (roughly) a A�1 dependence for A P 1.
5. Practical guidelines

5.1. Functional shape of the penalty parameter

One lacking feature of the discussion so far is that there is no obvious method of picking r: one, in practice,
must specify both the shape and the maximum value of the penalty parameter. There have been a number of
previously reported parameterizations of r; see, for example, [6,8,14]. A brief summary of the results are
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� One must choose rmax sufficiently large to justify using the penalty method at all. When non-dimension-
alized by the relevant time scale of the source, say r = rmax/xsrc, practice has shown that values on the
order of 10 < r < 100 are sufficient to ensure the amplitude and phase of the original signal are captured
in the extended field.

� There is an upper limit to rmax: for values of rmax significantly large the numerical problem of becomes
stiff and difficult to solve. This problem is also present in the original finite element computation of
incompressible flow [16].

� It has been found that the overall extended, or forced, solution is somewhat robust to changes in r(x)/rmax

for a given maximum value. That is, the smoothly diminishing exponential proposed in Eq. (61) may be
replaced with a sharp �top-hat� function
r ¼
rmax for r 6 r0;

0 otherwise

�

without introducing unwanted behavior. This implies that one should take r to be a large, non-zero con-
stant in the entire region where the original solution u is known, thus permitting the domain on which u

is specified to be of arbitrary shape. This is in contrast to the results of Section 3 which found an absorb-

ing sponge should be constructed to be smooth.

5.2. Influence of sponge zone on waveforms

There may be some residual effect of the shape of the domain X on the extended field v. To see this, con-
sider a model problem in which the original field u is an acoustic plane wave propagating in a quiescent
medium. As this plane wave approaches the boundary oX, it will intersect the boundary at different in-
stances in time, depending on the wave direction and the shape of the boundary. In the case of plane waves
approaching a straight boundary parallel to the wave fronts, the wave will intersect the boundary at the
same time, but we do not consider this special case.

Along the direction of k, the wavenumber vector, the plane wave u is one-dimensional so one may take
the problem of finding the extended field v to as being governed by the one-dimensional wave equation with
position x taken parallel to k. Then the equation for v is
o2v
ot2

� o2v
ox2

¼ �r
ov
ot

� ou
ot

� �
ð64Þ
for unity wave speed. Supposing that u(x, t) = exp(i(k Æ x � x t)) one finds that v has a component which de-
cays like expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

p
k � ðx� xBÞÞ for x > xB. Due to the shape of the boundary oX, the value of x for which

the plane wave intersects the boundary will be different, thus introducing some dependence of X on v.
To minimize this effect, the necessary steps are apparent. One may take rmax to be as large as possible and/

or increase the size of X. Alternatively, if something is known about the shape of the waves traveling into C,
then X may be shaped to minimize the anisotropy. For example, if spherical waves were produced in X,
choosing oX to be a sphere would be natural. In cases where the precise form of the forced solution is impor-
tant, special care must be taken to minimize the imprint of the forcing sponge on the resultant solution.

5.3. Resonance

The analysis of Section 3 suggested that in cases where a long sponge zone exists with a constant penalty
parameter, it is possible to create an unstable situation where the sponge acts as an unwanted source. Addi-
tionally, it appears that the inclusion of a damping sponge can remove a resonance condition only in special
cases of the spatial form of r(x). To see this, consider a case that generalizes the reflection example of
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Section 3.2. Instead of the one-sided reflection of Fig. 2 let there exist one-dimensional acoustic waves in the
bounded region �L 6 x 6 L generated by a source of frequency x. Additionally, let there exist two
sponges of length L < L=2 in the regions �L 6 x 6 �Lþ L for the left sponge and L� L 6 x 6 L
for the right sponge. The sponge strength and shape are to be the same in both zones. For the hard-wall
boundary conditions of ûð�LÞ ¼ ûðLÞ ¼ 0 the Green�s function ûG of (43), with ûs replaced by ûG and
ŝ ¼ dðx� yÞ, is given by (48) as
ûG ¼
ALy1ð�x� ðL� LÞÞ þ BLy2ð�x� ðL� LÞÞ for x < y;

ARy1ðx� ðL� LÞÞ þ BRy2ðx� ðL� LÞÞ for x > y;

�
ð65Þ
where the constants {AL,BL,AR,BR} are chosen to satisfy the boundary conditions at x ¼ �L and the
jump conditions at x = y. Integrating (43) and its first moment over the jump at x = y shows that while
ûG is continuous at x = y its first derivative satisfies the jump (see, for example, [23])
dûG
dx yþ

¼ dûG
dx

����
����
y�
þ1 ð66Þ
Utilizing the four conditions the four constants may be found. For the special case of a source localized
near x = 0, the solution is
ûG ¼
CL

D y1ð�x� ðL� LÞÞ þ DL

D y2ð�x� ðL� LÞÞ for x < y
CR

D y1ðx� ðL� LÞÞ þ DR

D y2ðx� ðL� LÞÞ for x > y;

(
ð67Þ
where AR = CR/D, BR = DR/D and similarly for the left coefficients AL and BL. The common denominator
D takes the form, when r is given by (47) and appropriately scaled and reflected, of
D ¼
4x sin 2xL

c0

� �
for n P 0; even;

4x cosh ixL
c0

þ Lg
ðnþ1Þc0

� �
for n > 0; odd.

8><
>: ð68Þ
Thus when n is even the sponge has no effect on the resonance properties of the system; that is, the sponge
does not prevent resonance. In contrast, when n is odd, the resonance is suppressed so long as g > 0; when
g ! 0 the resonance returns at the same frequency as the undamped system.

Extrapolation of this analysis to more general systems is, of course, impossible but the results suggest
that there may be conditions where sponge zones do not have the desired effect on system damping.
6. Conclusion

An analysis of sponge regions, which are commonly used to force a solution towards a target state, either
unsteady or steady, at computational boundaries has shown that the rate of convergence between the actual
and target states is proportional to ||r||�1, where ||r|| is a measure of the sponge strength. When applied to
the linearized equations of fluid mechanics, it was found that the sponge may unstably force the solution
unless equal sponge strengths were used in each equation. In the case of one-dimensional acoustic wave
propagation into a sponge strength of r = g(x/L)n, for positive integer n, the amplitude of the reflected
wave scales as gLexp{�gL/(n + 1)} for a sponge of length L. Numerical examples verify the ||r||�1 conver-
gence for linear, two-dimensional acoustic wave propagation. The efficacy of the forcing properties of the
sponge is shown qualitatively for a transient acoustic pulse in three dimensions. In addition, the introduc-
tion of instability waves into a two-dimensional, compressible, viscous shear layer, governed by the full
nonlinear equations, demonstrated a near ||r||�1 convergence rate.
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Appendix

Some details regarding the shear layer calculation are provided in this appendix. Consider the equations
of motion for a two-dimensional compressible, viscous fluid for the conserved densities:
oq
ot

þ oquj
oxj

¼ �rðq� qrefÞ;

oqui
ot

þ o

oxj
quiuj þ pdij � sji
	 


¼ �rðqui � ðquiÞrefÞ;

oqE
ot

þ o

oxj
qE þ p½ �uj þ qj � sjiui
	 


¼ �rðqE � ðqEÞrefÞ.

ð69Þ
Here, the fluid has mass density q, momentum density qu, energy density qE and pressure p. The viscous
effects include the stress sij and heat flux qj. An ideal gas is assumed with the following constitutive relations:
sji ¼ lðT Þ oui
oxj

þ ouj
oxi

� �
þ kðT Þ ouk

oxk
dij;

qj ¼ �kðT Þ oT
oxj

;

ð70Þ
where the temperature T is given by T = p/(Rq) with specific gas constant R. The viscosity temperature
dependence is tabulated by White [24] as l/l0 = (T/T0)

n for n = 2/3. The second viscosity coefficient k is
taken to be lB + 2/3 with lB/l = 0.6 [25].

At the inflow portion of the domain, near x/dx,0 = 0, the shear layer profile is governed by the similarity
solution of the compressible boundary layer equations using the Howarth transformation [26]. If the inflow
(at x = 0dx,0) profile is denoted by qin then the instability waves, or eigenfunctions, correspond to homo-
geneous solutions of the inviscid equations linearized about qin. Assuming the disturbance to be modal with
a non-trivial y-structure q0 ¼ q̂ðyÞ expfiðxt � axÞg, with real frequency x and complex eigenvalue a, corre-
sponding to the spatially developing disturbance, the vertical velocity v̂ satisfies the compressible Rayleigh
equation
d2v̂
dy2

� 1

n
dn
dy

dv̂
d y

� a
x� auin

1

n
duin
dy

dn
dy

� d2uin
dy2

� �
� qinn

� �
v̂ ¼ 0; ð71Þ
with n ¼ ðx� auinÞ2 � c2ina
2. We seek solutions to (71) corresponding to the Kelvin–Helmoltz (discrete)

modes that satisfy the boundary conditions v̂ � expf�
ffiffiffiffiffiffiffiffi
qinn

p
kykg as ||y||! 1.

Solution of the eigenvalue problem (71) is accomplished using a shooting technique to determine a from
a given real-valued x. With the (x,a) pair determined Rayleigh�s equation (71) is integrated to determine
the disturbance mode shape v̂. The disturbance profiles of the conservative variables are found by linear
combinations of v̂ and its y-derivative. For a frequency of x = 0.2831c1/dx,0 the eigenvalue a is
ð0.4086� 0.1994iÞd�1

x;0 which corresponds to a downstream-traveling instability wave with x-direction wave-
length of ki = 2p/ar = 15.4dx,0 and a phase speed of x/ar = 0.7a1.
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